LIVE image
Calmac IceBank tanks at One Bryant Park, one of the nation's greenest high-rise buildings.
Photo: © Gunther Intelmann for Cook+Fox Architects
What surprised me most in researching thermal energy storage for the EBN feature article this month is that it's not incorporated into virtually all commercial buildings. In a nutshell, the idea is to use electricity at night to make ice and then use that ice during the daytime as the cooling source for the building. Thermal energy storage (TES) can also involve chilled water (instead of ice) or electric heat stored in bricks or other thermal mass, but I focused on ice with this article. A number of very well-known green buildings rely on ice-based TES cooling. One of the newest such buildings is the 2.1-million square-foot (195,000 m2) Bank of America building in New York City at One Bryant Park. I visited the sub-basement (three floors down) to see the 44 eight-foot-diameter, insulated CALMAC tanks in the building that collectively provide about a quarter of the building's cooling. Each of these tanks holds about 1,600 gallons of water that is alternately frozen and thawed by circulating a glycol solution through about three miles of plastic tubing. It's high-tech, but the result is surprisingly simple. Benefits of ice-based TES include the following:
  • Saving money by using less expensive off-peak electricity for cooling. Most utility companies offer less expensive off-peak electricity rates for commercial and industrial customers.
  • Saving money by reducing electric demand charges. Demand charges are based on the peak electricity consumption of a building. By shifting the operation of energy-intensive chillers or compression-cycle air conditioners from daytime (when electricity consumption in commercial buildings is highest) to nighttime, peak demand can be significantly reduced.
  • First-cost savings can often be achieved by downsizing chillers, pumps, ducts, and other components. In some cases, floor-to-floor height can also be reduced, because smaller ducts are used, resulting in dramatic savings.
  • Even though there is an efficiency loss with any heat-exchange process, a lot of the losses inherent in ice-based TES can be offset by higher efficiency that results from operating the chiller or A/C system continuously at night (eliminating the on-off cycling) and by operating the equipment with cooler nighttime air temperatures.
  • Reduced pollution emissions? This depends on where the building is located and how the local utility company generates power during on-peak and off-peak periods. If the baseload generation is hydropower and nuclear and peaking plants are natural gas or oil, minimizing peak electricity use can significantly reduce emissions — but with baseload coal plants and peaking hydropower or cleaner-burning natural-gas plants, the opposite can be true.
  • Using off-peak electricity for cooling will allow us to benefit from wind power and other renewable electricity sources. When the wind is blowing isn't always when we need power. That's fine if wind energy is only providing a few percent of our electricity, but if that fraction grows to 20% or more, it could be a problem. Shifting cooling loads to nighttime hours is an important way to help us benefit from wind power.
More detail on these benefits, plus explanations of how different types of ice-based TES systems work, is described in Buildings on Ice: Making the Case for Thermal Energy Storage. The article lists more than a dozen companies that produce these TES systems, including CALMAC Manufacturing, Baltimore Aircoil, EvapCo, and Ice Energy. All but the latter of these companies produce TES equipment that works with chillers; Ice Energy makes TES equipment for smaller, packaged A/C systems. To access the full article, you have to be a paid subscriber to BuildingGreen.com. (Because we don't carry advertising in EBN, we have to charge for access to our information.) If you're not already a subscriber, you can either sign up for a week for $12.95 or get an annual membership for $199. Alex Wilson is the executive editor of Environmental Building News.

If you enjoyed this article, sign up for BuildingGreen email updates

*

Comments

1 Sounds like very good common posted by Mark on 07/06/2009 at 12:33 am

Sounds like very good common sense! T,he manufacturers of these systems could do well to get themselves over to Transport for London and talk about installing this kit in the underground railway network there that on the deeper lines is plagued with excessive heat, plenty of ground water, space to put the kit and locations above ground to put the renewable energy systems to contribute some sustainable energy to the job.

2 TSE is really cool, pardon th posted by Alan Whitson, RPA on 01/18/2010 at 11:07 am

TSE is really cool, pardon the pun. I've used it on several projects back in the early 1980s. Typically it increased the building's value by 5% through lower energy costs. The comment in the article about smaller ducts has more to do with using a lower air temp 44F versus 55F rather than the use of TSE itself.

However, when the utilities stopped offering rebates (often up one third of the first costs) they stopped being popular since the A&E community did not have the ability to sell the economic benefits. The TSE system as used in the One Byrant Park/ BanK America Tower is designed to shave peak demand load and rebates are coming back.

Alan Whitson, RPAwww.squarefootage.net


— Share This Posting!

Recent Discussions

posted by acksolarsolutions
on Sep 18, 2014

You simplified PV to much. Inverters and panels can stop working so there is maintenance. Also you lose a lot of those electrons moving though...

Matrix Total Home System
posted by buildingshelter
on Aug 26, 2014

Does anyone have experience with the Matrix by NTI?

posted by behrlich
on Aug 13, 2014

Hi Evan, We share your nano concerns, and as a precaution, GreenSpec does not list nanotechnology products. I chatted with another one of their...

Recent Comments


Picking a Water Heater: Solar vs. Electric or Gas Is Just the Beginning

Paul Jensen says, "You simplified PV to much. Inverters and panels can stop working so there is maintenance. Also you lose a lot of those electrons moving though..." More...


7 Tips to Get More from Mini-Split Heat Pumps in Colder Climates

bob coleman says, "If looking to do a home HVAC system upgrade/replacement etc, one of the best steps is to get an whole house energy audit performed by a company THAT..." More...

Donna Pirnie says, "Hi. I have 4500sq ft 100year old home with new blown insulation. Also having roof replaced soon. Currently have a ETS Steffes boiler that heats our..." More...

Nan Kul says, "I am on my third through the wall Frigidair heat pump in my sunroom in the last 25 years. It is so Noisy. I am planning to switch to a 12000 btu..." More...


Foam-In-Place Insulation: 7 Tips for Getting Injection and Spray Foam Right

J.R. Anderson says, "The performance is in the details. This was a very good article from that viewpoint." More...