LIVE image

I'm a huge fan of wind power, but we should recognize that some applications of wind don't make sense

Aerovironment wind turbines on the Boston Museum of Science. Performance has been poor and Aerovironment has discontinued the product. Click to enlarge. 
Photo Credit: David Rabkin, Boston Museum of Science

At least in our neck of the woods, wind power is very much in the news these days. The Vermont legislature is debating whether to institute a three-year moratorium on what detractors refer to as “industrial wind power,” and debate is raging in the nearby towns of Windham and Grafton, Vermont about a potential wind farm. I figured I should weigh in.

As readers of this blog know, I am a strong proponent of renewable energy, including wind power. But I’m also not shy about pointing out situations in which wind power doesn’t make sense. This week I’m going to focus on those misguided or less attractive wind power applications. Next week I’ll cover where we should be heading with wind power and discuss projects like the one proposed for Windham and Grafton.

Don’t put wind turbines on buildings

Wind turbines almost never make sense on buildings—even tall buildings. When I started researching “building-integrated wind” a few years ago for my newsletter, Environmental Building News (EBN), I thought I was going to write an article that painted a positive picture of putting wind turbines on top of buildings. After all, tall buildings can get the turbines up high where it’s windier, and like rooftop photovoltaic (PV) systems, the power is generated right where it will be used.

But the more I dug into it, the more clear it became to me that building-integrated simply does not make sense.

First, wind turbines installed on buildings have to be small so that they won’t affect the building’s structure, so the power-generation potential is limited.

Second, wind turbines generate significant noise and vibration. That can be okay when the turbines are a quarter-mile away, but on a building it can be a real problem—particularly with a steel-framed commercial building that transmits noise and vibration throughout the structure.

Third, dealing with turbine installations on buildings increases costs significantly. Special attachments are required, and loads may have to be distributed downward through the building.

Fourth, even if the economics work out it’s hard to believe that insurance companies would embrace the installation of wind turbines on buildings. I suspect that insurers would raise insurance rates significantly, due to the increased liability—or perceived liability—of blades flying off wind turbines or rooftop towers collapsing and damaging roofs. Insurance rates wouldn’t have to rise very far for those costs to exceed the value of the generated electricity.

Finally, it turns out that all that wind swirling by tall buildings is highly turbulent. Wind turbines don’t like turbulence; they do much better with like laminar wind flow. Some types of wind turbines apparently do better with turbulence than others, but most don’t perform well in such conditions.

An installation of the Swift Wind Turbine at the Boston Museum of Science. Swift turbines were developed by Renewable Devices in Scotland and are manufactured in Michigan. Click to enlarge. 
Photo Credit: David Rabkin, Boston Museum of Science

The lack of performance data

When I was researching my EBN article, I spent weeks trying to track down performance data on building-integrated wind turbines, but could find almost none. I knew that that data was being collected by manufacturers (up to a dozen manufacturers were producing wind turbines specifically designed for installations on buildings), and the fact that they didn’t want to share it made me suspicious that it was far worse than those manufacturers were claiming.

With a lot of anecdotal evidence of extremely bad performance of building-integrated wind turbines, I got more and more discouraged about the practicality of putting turbines on buildings, and I ended up titling my May, 2009 EBN article “The Folly of Building-Integrated Wind.” Wind turbines don’t belong on buildings.

After my article came out, I finally tracked down some performance data from the Boston Museum of Science, which installed building-integrated wind turbines from five different manufacturers. As I suspected, the performance was terrible—far lower than manufacturer claims. You can learn more about the Museum of Science wind power experiments here.

With ground-mounted wind turbines, smaller is not better

Even when we stick with ground-mounted wind turbines, the performance and economics of small machines (a few tens of kilowatts (kW) of rated output and less) is usually very poor. With wind turbines there is a huge economy of scale. Home-scale wind power rarely makes good economic sense—except in locations where there is strong, steady wind.

I’m disappointed by this. I would really like to think that I could install a cost-effective wind turbine at my home, but I can’t. A good site for wind power—where there a strong 15 mph wind much of the time—wouldn’t be a place you’d want to live. And with small wind turbines you can’t put them too far from the place where the power will be used or fed into the utility grid. So even if your property rises up to a ridge, putting a small wind turbine there may not be feasible in terms of getting the power down to your house or feeding it into the power grid.

Studies I’ve examined where actual performance of small, ground-mounted wind turbines has been collected, the measured output has been significantly below the predicted output. Plus, the maintenance requirements are significant. Compared with the alternative—arrays of PV modules that just sit there with no moving parts—it’s just a whole lot more difficult to justify small wind. The economics usually don’t work.

Next week, we’ll look at where wind power can make sense: much larger wind turbines that can be aggregated into wind farms.

BTW, I’ll be presenting an all-day, pre-conference workshop, Skills for Building Resilient Communities, with three colleagues, Don Watson, FAIA, Joel Gordes, and Maureen Hart, at the Northeast Sustainable Energy Association’s annual Building Energy Conference on Tuesday, March 5th. Details can be found here.

Alex is founder of BuildingGreen, Inc. and executive editor of Environmental Building News. In 2012 he founded the Resilient Design Institute. To keep up with Alex’s latest articles and musings, you can sign up for his Twitter feed.

If you enjoyed this article, sign up for BuildingGreen email updates

*

Comments

1 Brutally Honest Review of Wind Power - for England posted by John Gant on 02/11/2013 at 12:26 pm

A very interesting, and brutally honest review of wind power is included in the noteworthy study by David J. C. Mackay published in 2008. It is titled "Sustainable Energy - Without the Hot Air", and is available for free download at www.withouthotair.com .   He is indeed very sustainability-minded, as a Professor of Natural Philosophy in the Department of Physics at the University of Cambridge.

The purpose of this work  was to inform public policy deliberations in Great Britain; so the conclusions are specifically written with that region in mind. A synopsis offers "The second part of Sustainable Energy – without the hot air explores six strategies for eliminating the gap between consumption and renewable production identified in the first part, then sketches several energy plans for Britain, each of which adds up.

Two powerful quotes from the 10 page synopsis are:

"Roof-mounted micro-wind turbines are an utter waste of resources. They never pay for themselves."

and

(Photo description:) "An Ampair “600W” micro-turbine. The average power generated by this micro-turbine in Leamington Spa is 0.037 kWh per day (1.5W)."

The document provides many recommendations for effective methods to improve energy efficiency.

 

 

 

2 B.I. Wind does not work posted by Douglas White on 02/13/2013 at 09:54 am

In 2009 a client approached me to design a home in the Virgin Islands with Enviro-Energies wind turbines on the roof. At the time, being a lifelong proponent of renewable energy and frustrated by the lack of building integrated renewable energy systems in general, it seemed like a grand idea. What a farce Enviro-Energies turbines turned out to be!!

Well, after a year of research I came to the same sad conclusion as Alex's article. B.I. Wind is a hoax.  And almost no real progress has been made by PV manufacturerers, in B.I. solar, which may actually be moving backwards!  Our homes should have their own operating systems to generate power, process & recycle waste and grow food!

 


— Share This Posting!

Recent Discussions

posted by jrice01720
on Nov 22, 2014

I did ultimately install a Geospring in the basement of my house (prettygoodlakehouse.com). I can't hear it at all in the living space but the...

posted by atwilson
on Nov 22, 2014

Our Geospring water heater is located in our basement, separated from the living space only by an uninsulated floor. If the door to the basement...

posted by jacksonlui
on Nov 21, 2014

i've been looking at these water heat pumps and the hidden costs and considerations are installation requirements (30A circuit), location of...

Recent Comments


7 Tips to Get More from Mini-Split Heat Pumps in Colder Climates

bob coleman says, "The units stop to defrost regardless of snowfall, the colder it gets the more they defrost. A roof can help protect it from being buried by deep..." More...

Amy InNH says, "$21K? How much square footage? My two Fujitsu mini-splits heat/cool 1600 sq ft and cost $6K for both, including installation. I got them for the A..." More...

Amy InNH says, "Hi Kevin. My two Fujitsu mini split heat pumps take care of 1600 sq ft, one for each floor. First floor is open, second floor doors must be open..." More...


A Look at Heat Pump Water Heaters

Joseph Rice says, "I did ultimately install a Geospring in the basement of my house (prettygoodlakehouse.com). I can't hear it at all in the living space but the..." More...

Alex Wilson says, "Our Geospring water heater is located in our basement, separated from the living space only by an uninsulated floor. If the door to the basement is..." More...